

Universidade Federal do Paraná

Departamento de Solos e Engenharia Agrícola

Nutrição Mineral de Plantas

Adubos fluídos – Adubação foliar

Volnei Pauletti

<u>Adubos fluídos – adubação foliar</u>

Adubos fluídos (líquidos)

- Conceitos
- Uso
- Vantagens
- Matérias primas
- Fabricação

Adubação foliar

- Introdução
- Absorção foliar
- Fatores que afetam a absorção foliar
- Vantagens e limitações
- Resposta das culturas

ADUBOS FLUÍDOS

CONCEITOS (Bichara et al., 1994)

Adubos líquidos ou fluídos:

Produtos fertilizantes simples ou complexos, cuja característica principal é poderem ser manipulados, transportados, armazenados e aplicados na lavoura na forma fluída.

Divididos em:

1. Solução:

Adubo líquido que apresenta todos os nutrientes dissolvidos em meio aquoso, formando uma solução verdadeira. Ex. Uran

2. Suspensão:

Apresentam parte dos nutrientes dissolvidos no meio e outra parte suspensa na solução. Ex. 10:30:00

Outros:

Resíduos orgânicos: vinhaça e estercos líquidos

CONCEITOS (Bichara et al., 1994)

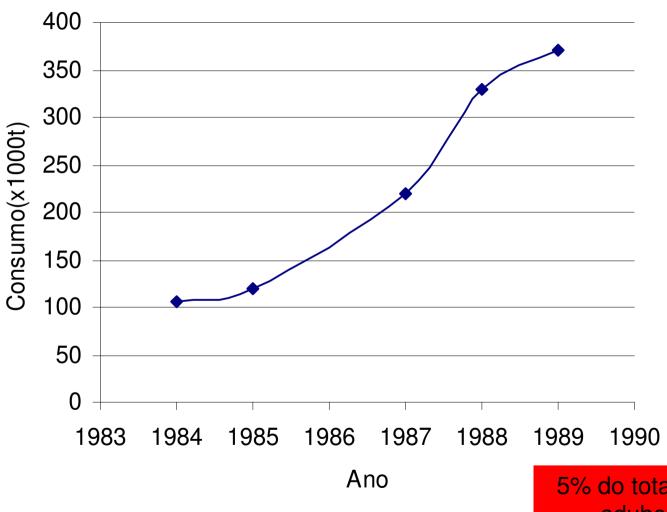
Armazenamento:

1. Solução:

Por longo período, sem agitação

2. Suspensão:

Precisa agitação após a fabricação (transporte, armazenamento e aplicação). Uso de argilas (bentonita)


USO

- substituição parcial ou total dos adubos sólidos

- aplicações foliares (adubação foliar)

Consumo de adubos fluídos

BRASIL

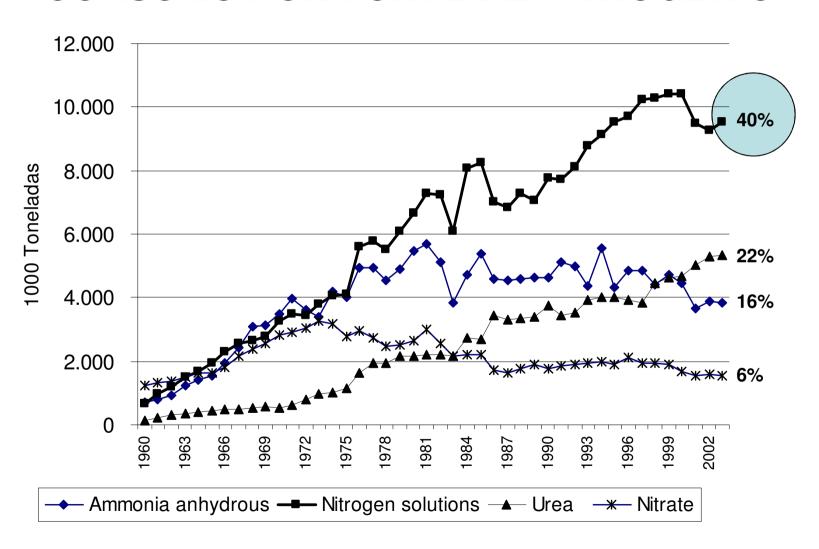
Adaptado de: Malavolta, 1994

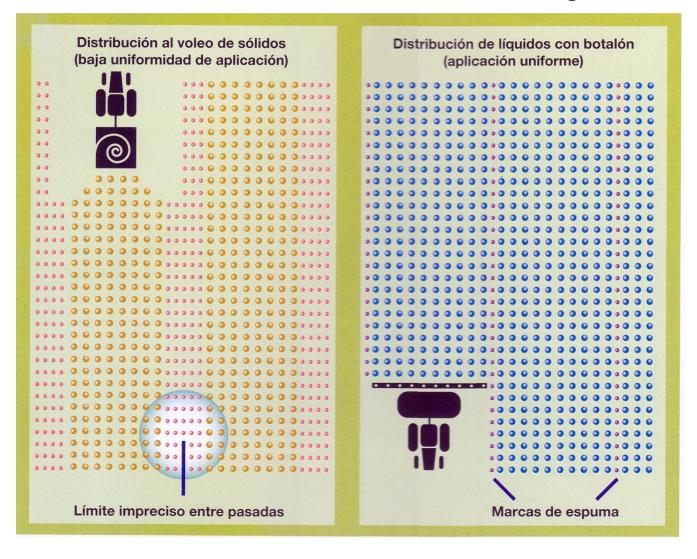
5% do total dos adubos consumidos

BRASIL

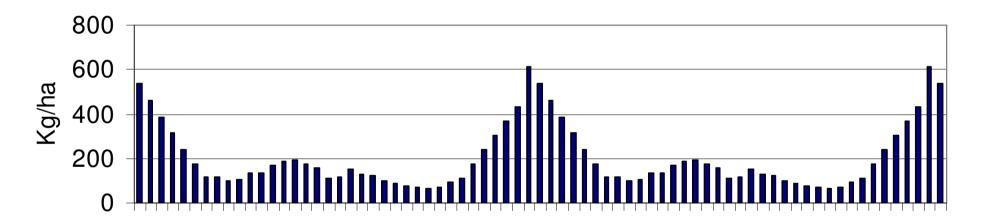
Cana 80-90% Citrus 5-10% Outros

5-10%

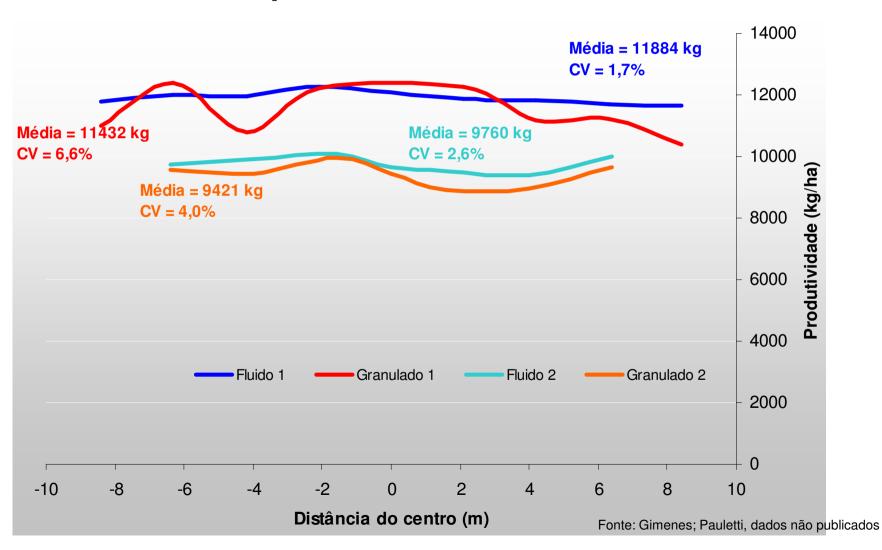

Adaptado de: Malavolta, 1994



EUA
CONSUMO POR FONTE DE NITROGÊNIO

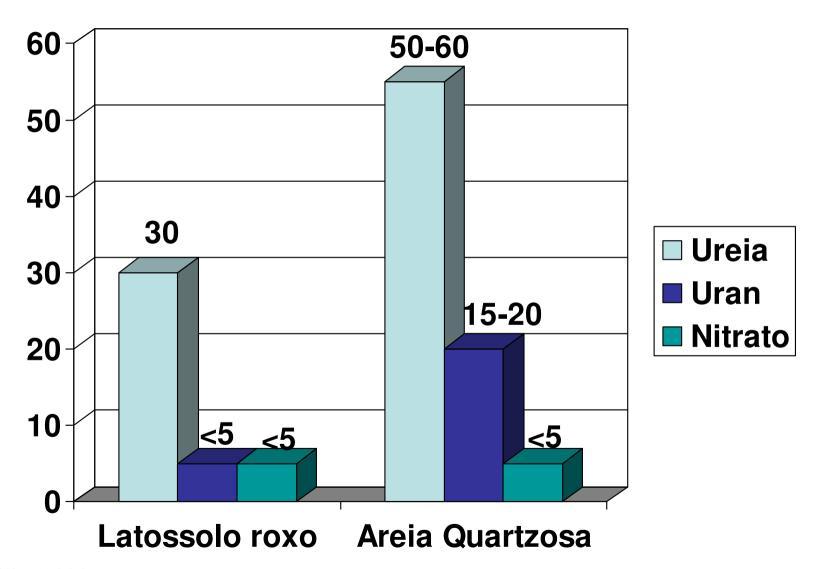

VANTAGENS dos adubos fluídos

1. Uniformidade de distribuição



Distribuição

Perfil da Distribuição - 18m - Distribuidor 3 (adaptação)


Distribuição – Efeito na produtividade

2. Distribuição a taxa variada

3. Menores perdas de NH₃ por volatilização

Fonte: Trivilin, 1993

4. Facilidade de aplicação

N sólido

N fluído

5. Flexibilidade para fazer formulações

Tipo		Composição	
	N	P_2O_5	K ₂ O
N	32	0	0
	20	0	0
NP	6	30	0
	10	30	0
NK	20	0	13
	16	0	7
	18	0	18
NPK	3	15	15
	3	15	10
	4	14	8
	10	10	10

Malavolta, 1994

Outras vantagens

6. Mistura com agroquímicos

7. Baixo custo de transporte e armazenagem

8. Custo de produção é menor que da maioria das fontes sólidas de N

MATÉRIAS PRIMAS

Elemento	Fonte	Teor (%)
Nitrogênio (N)	Amônia anidra	82
	Aquamônia	15 a 20
	Nitrato de amônio	32
	Uréia	45
	Sulfato de amônio	20
Fósforo (P ₂ O ₅)	Ácido fosfórico	30 a 54
Potássio (K ₂ O)	Cloreto de potássio	60
	Sulfato de potássio	52
Cálcio (Ca)	Óxido	60
,	Cal hidratada	46
	Calcário	24
Magnésio (Mg)	Óxido	55
,	Calcário	11
	Sulfato	9
Enxofre (S)	Gesso	16
	S elementar	99
N - P ₂ O ₅	Monoamônio fosfato (MAP)	11-48
-	Diamônio fosfato (DAP)	18-46
N - K₂O	Nitrato de potássio	11-44
	Salitre potássico	15-14

MACRONUTRIENTES

Nutrição Mineral de Plantas

MATÉRIAS PRIMAS

Elemento Fonte		Teor (%)	
Ī	Boro (B)	Ácido Bórico	17
		Bórax	11
(Cobre (Cu)	Sulfato de cobre	25
ı	Ferro (Fe)	Sulfato ferroso	19
ſ	Manganês (Mn)	Sulfato manganoso	26 a 28
ſ	Molibdênio (Mo)	Molibdato de sódio	39
		Molibdato de amônio	54
	Zinco (Zn)	Sulfato de zinco	23

MICRONUTRIENTES

FABRICAÇÃO

Dois processos tradicionais:

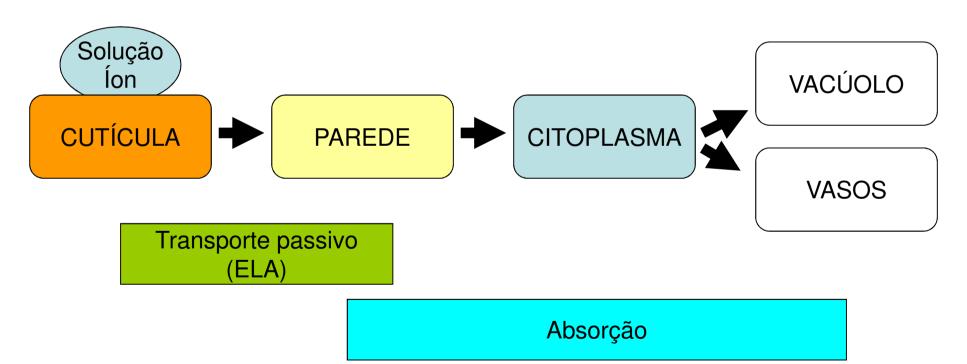
1. A frio (cold mix):

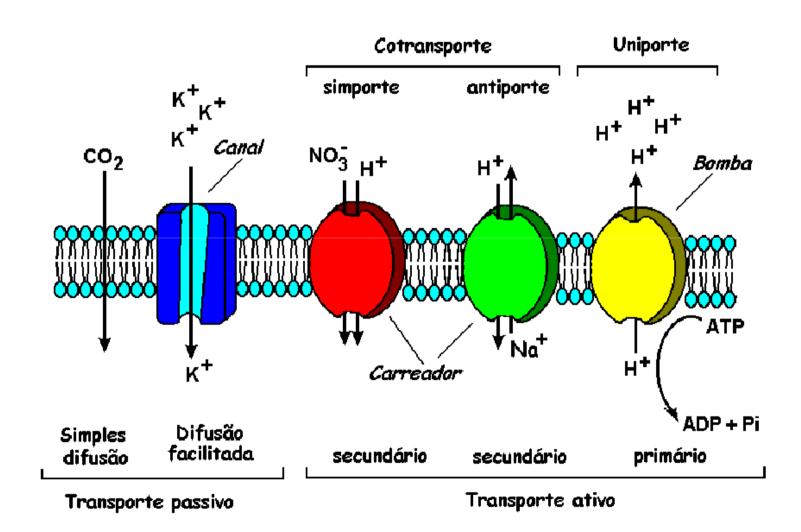
Nesse processo não há liberação de calor. Ex: Uran

2. A quente (hot mix):

Ocorre liberação de calor. Ex: aquamônia + ácido fosfórico

FÁBRICA –




ADUBAÇÃO FOLIAR

VIDA VEGETAL - começou no mar, durante o processo evolutivo as folhas não perderam a capacidade de absorver H₂O e sais minerais.

As folhas, assim como as raízes, também apresentam capacidade de absorver nutrientes

Caminho percorrido pelo nutriente

CUTÍCULA

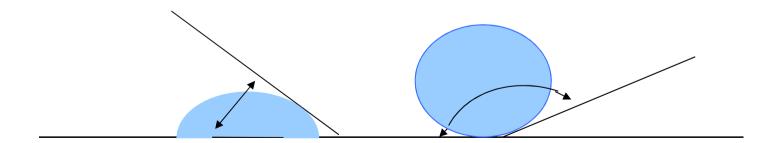
CUTÍCULA

A cutícula é permeável à água e a todos os tipos de substâncias, sejam elas polares, apolares, lipossolúveis ou hidrossolúveis.

Composição:

Cera
→ Hidrofóbica

Cutina
→ Semi-Hidrofóbica

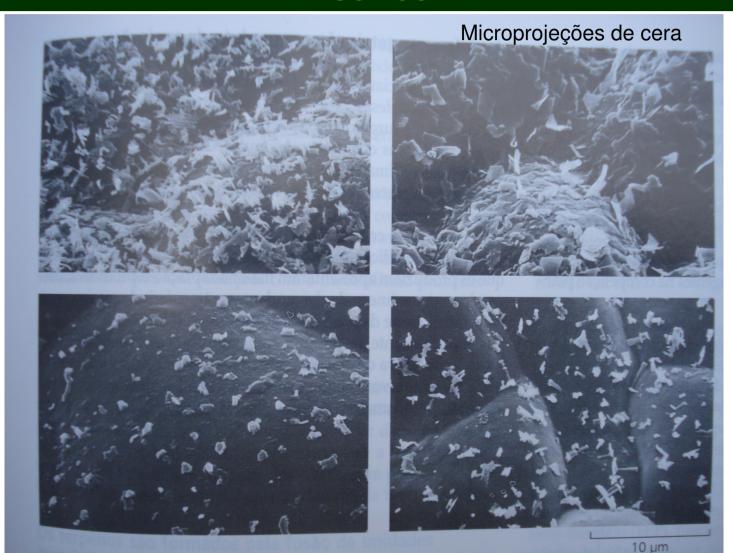

Pectinas
→ Hidrofílica

Celulose
→ Hidrofílica

CUTÍCULA

Características:

- 1. Molhabilidade: capacidade que tem um líquido de aderir a um sólido e se espalhar sobre a sua superfície ou penetrar entre suas moléculas
 - ângulo de contato entre o líquido molhante e a superfície foliar.



CUTÍCULA

Características:

- 2. Hidrorrepelência: propriedade que tem um sólido de não ser molhado pelo líquido
 - Microprojeções de cera
 - Espessura da camada cerífera
 - Composição química da cera

CUTÍCULA

Taiz; Zeiger, 2004

CUTÍCULA

Características:

- 3. Hidrofilia: hidratação das pectinas
- 4. Troca iônica: grupos -OH e -COOH na pectina, cutina e cera
- 5. Polaridade: substâncias polares apresentam afinidade com a água
 - substâncias polares: pectina
 - substâncias apolares: cera e cutina

FATORES QUE AFETAM A ABSORÇÃO FOLIAR

1) Fatores inerentes à folha:

1. Estrutura da folha:

Cutícula fina e alta frequência de estômatos favorecem a absorção foliar

Absorção de zinco (como cloreto) pelo cafeeiro

Parte tratada	Absorção (% do aplicado)
Raízes (solução nutritiva)	5,0
Folhas:	
Parte superior	12,0
Parte inferior	42,5
Folhas: ambas	20,5

Malavolta, 1981

FATORES QUE AFETAM A ABSORÇÃO FOLIAR

1) Fatores inerentes à folha:

1. Estrutura da folha:

2. Composição química da cutícula:

3. Idade da folha:

FATORES QUE AFETAM A ABSORÇÃO FOLIAR

2) Fatores inerentes aos nutrientes:

1. Mobilidade na folha:

MOBILIDADE COMPARADA DOS NUTRIENTES APLICADOS NAS FOLHAS

Altamente móvel	Móvel	Parcialmente móvel	Imóvel
Nitrogênio	Fósforo	Zinco	Boro
Potássio	Cloro	Cobre	Cálcio
Sódio	Enxofre	Manganês	
	Magnésio	Ferro	
		Molibdênio	

TEMPO PARA ABSORÇÃO DE 50% DOS NUTRIENTES APLICADOS NAS FOLHAS

Nutriente	Tempo
N (uréia)	(1/2)a 36 horas
Р	5 - 15 dias
K	10 a 96 horas
Ca	10 a 96 horas
Mg	6 a 24 horas
S	1 a 10 dias
CI	1 a 4 dias
Fe	10 a 20 dias
Mn	18 a 48 horas
Мо	10 a 20 dias
Zn	11 a 36 horas

2) Fatores inerentes aos nutrientes:

1. Mobilidade na folha:

- 2. Interações entre nutrientes:
 - Sinergismo entre uréia e Mn
 - Antagonismo entre Cu e Zn

3) Fatores inerentes às soluções pulverizadas:

1. Solubilidade das fontes de nutrientes:

Fonte	Temperatura	Solubilidade
	°C	g L ⁻¹
Sulfato de amônio	20	760
Sulfato de Mn	0	1050
Sulfato de Zn	20	965
Sulfato de Cu	0	316
Uréia	20	1050
Nitrato de amônio	20	1950
Fosfato diamônio (DAP)	20	408
Fosfato monoamônio (MAP)	20	374
Molibdato de amônio		430
Ácido bórico	30	63,5
Bórax	0	21

Fonte: Vitti; Boareto; Penteado (1994)

- 3) Fatores inerentes às soluções pulverizadas:
- 1. Solubilidade das fontes de nutrientes:
- 2. Concentração das soluções:

Fitotoxicidade de adubo nitrogenado em milho

CONCENTRAÇÃO DE URÉIA NA CALDA DE PULVERIZAÇÃO PARA ALGUMAS CULTURAS

Cultura	% uréia	Cultura	 % uréia
Abacaxi	2,4 - 6	Cereja	0,6 - 3,0
Aipo	2,4	Cítricas	0,6 - 1,2
Alface	0,5 - 0,7	Feijão	0,5 - 0,7
Alfafa	2,4	Fumo	0,3 - 1,2
Algodão	2,4 - 6	Lúpulo	5,0 - 6,0
Ameixa	0,6 - 1,8	Maçã	0,5 - 0,7
Banana	0,6 - 1,2	Milho	0,6 - 2,4
Batatinha	2,4	Morango	0,5 - 0,7
Beterraba	2,4	Pepino	0,3 - 0,6
Cacau	0,6 - 1,2	Pêssego	0,6 - 3,0
Café	2,5	Pimenta	0,5 - 0,7
Cana	1,2 - 2,4	Repolho	0,7 - 1,4
Cebola	2,4	Trigo	2,4 - 9,6
Cenoura	2,4	Videira	0,5 - 0,7

Adaptado de: OLEYNIK et al., 1998

- 3) Fatores inerentes às soluções pulverizadas:
- 1. Solubilidade dos nutrientes:
- 2. Concentração das soluções:
- 3. Composição das soluções:

3) Fatores inerentes às soluções pulverizadas:

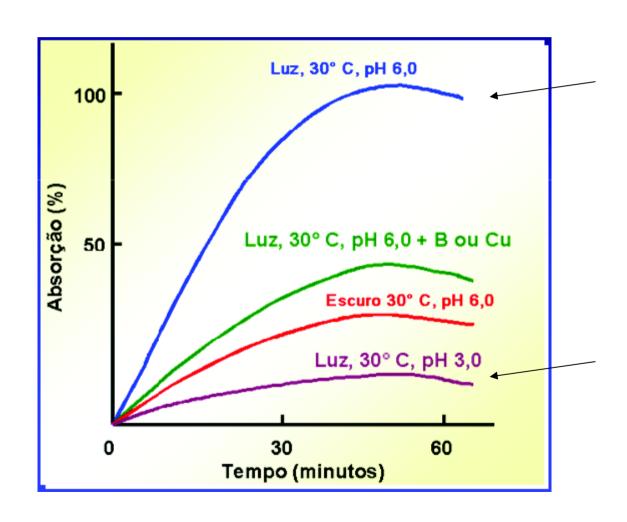
- 1. Solubilidade dos nutrientes:
- 2. Concentração das soluções:
- 3. Composição das soluções:
- 4. Surfactantes:
 - espalhantes
 - adesivos
 - humectantes

Composição solução (compatibilidade, solubilidade, indice salino, interações entre nutrientes, surfactantes, ...)

- uréia: sinergismo, alta solubilidade, baixo I.S.
- $(H_2PO_4 + NH_4)$ precipitam vários metais (Mg, Cu, Zn)
- <u>Mg</u> favorece translocação de P
- <u>Açúcar</u> retarda absorção da uréia e reduz fitotoxidez
- -agentes protetores: Ca(OH)₂, CaO+NaOH, CaS permitem maiores concentrações de Zn e Cu sem causar injúrias
- -MgSO4: protetor contra injúrias foliares

Efeito de agentes quelatizantes na absorção e translocação do Ferro

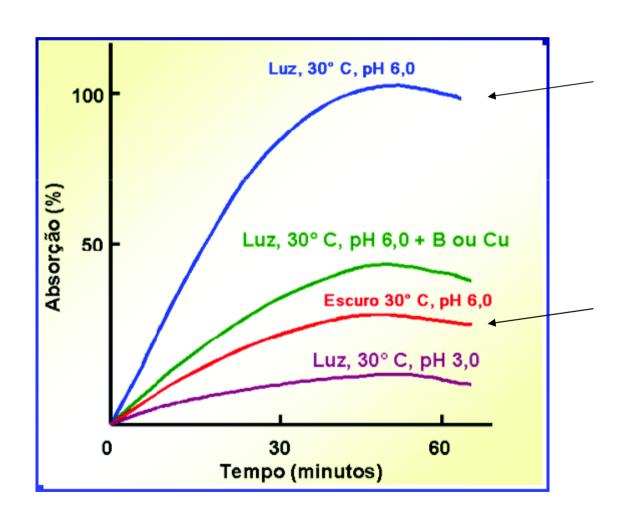
Forma aplicada	Absorvido	Translocado	
	% do aplicado	% do absorvido	% do aplicado
Sulfato	0,9 b		0,06
EDTA	19,9a	26,8a	5,33
EDDHA	15,0a	19,4 b	2,91
DTPA	14,1a	22,0a	3,10


INFLUÊNCIA DE QUELATIZANTES NA ABSORÇÃO E TRANSLOCAÇÃO DE Zn

Forma aplicada	Absorvido	Translocado	
	% do aplicado	% do absorvido	% do aplicado
Sulfato	74,4a	7,7a	5,71
EDTA	24,5 b	10,0a	
EDDHA		10,0a	
DTPA		7,5a	

3) Fatores inerentes às soluções pulverizadas:

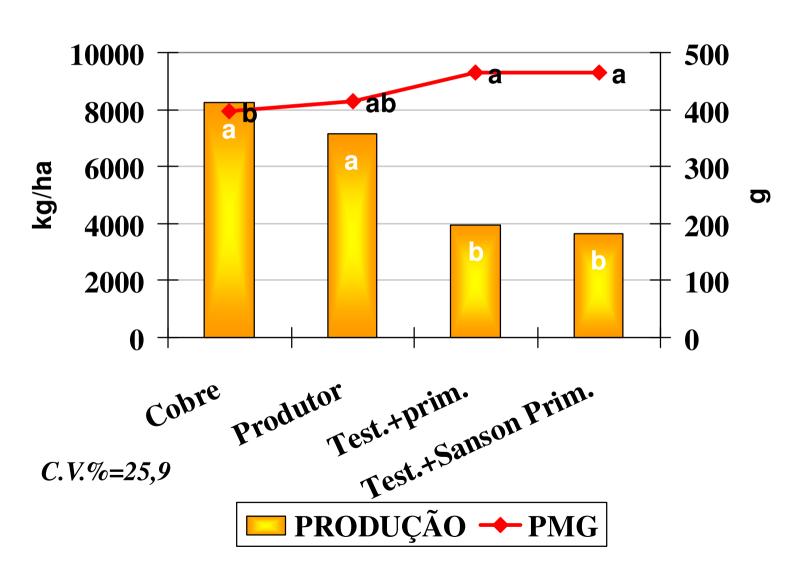
- 1. Solubilidade dos nutrientes:
- 2. Concentração das soluções:
- 3. Composição das soluções:
- 4. Surfactantes:
- 5. pH da solução:


FATORES QUE INFLUENCIAM A ABSORÇÃO DO ZINCO PELAS FOLHAS DO CAFEEIRO

3) Fatores externos:

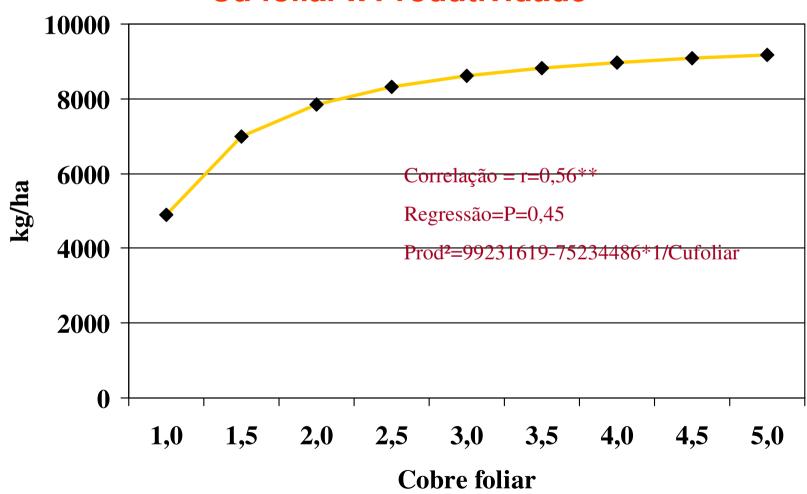
- 1. Luz:
- 2. Disponibilidade de água no solo:
- 3. Umidade atmosférica:
- 4. Temperatura:
- 5. Modo de aplicação:

FATORES QUE INFLUENCIAM A ABSORÇÃO DO ZINCO PELAS FOLHAS DO CAFEEIRO


VANTAGENS DA ADUBAÇÃO FOLIAR

- 1. Correção das deficiências a curto prazo:
- 2. Alto índice de utilização pelas planta dos nutrientes aplicados:
- 3. Contornar restrições de absorção de nutrientes pelo solo:
- 4. Doses totais de micronutrientes geralmente são menores que via solo:
- 5. Possibilidade de aplicação de micronutrientes com tratamentos químicos:

LIMITAÇÕES DA ADUBAÇÃO FOLIAR


- 1. Não ocorre efeito residual ou é menor que as aplicações no solo:
- 2. Aplicações no início do crescimento da cultura podem não ser efetivas:
- 3. Alto custo de aplicação caso não seja possível aplicar com os tratamentos químicos:
- 4. Pode haver incompatibilidade com agroquímicos ou antagonismo entre nutrientes:

MILHO EM VÁRZEA

MILHO EM VÁRZEA

Cu foliar x Produtividade

RECOMENDAÇÃO PARA A CORREÇÃO DE DEFICIÊNCIA POR VIA FOLIAR

Deficiência	Cultura	Fonte	Dosagem (kg 100L ⁻¹)
Nitrogênio	Abacaxi		3 - 12
	Batatinha		2,0 - 2,5
	Cafeeiro		2,5
	Cana-de-açúcar	Uréia	1,25 - 3,0
	Banana, manga		1,25 - 3,0
	Macieira, Videira		0,50 - 0,75
	Tomateiro		2,0 - 2,5
Fósforo	Cafeeiro	Superfosfato simples, Fosfato de amônio ou de potássio	1,0
	Cana-de-açúcar		0,5 - 2,0
Potássio	Cafeeiro	Cloreto, Sulfato, Nitrato,	0,5
	Citros	Sulfato	0,6 - 1,2
		Nitrato	3 - 12
Cálcio	Aipo	Cloreto de cálcio	1,8 - 2,4
	Tomateiro		0,6 - ,4
Magnésio	Aipo, Citros, Macieira, Tomateiro	Sulfato de magnésio	1 - 2
			Malavolta, 1981

iviaiavoita, 1981

RECOMENDAÇÃO PARA A CORREÇÃO DE DEFICIÊNCIA POR VIA FOLIAR

Deficiência de	Cultura	Fonte nutriente	Concentração
			(kg/100L)
	Aipo, alfafa,		, , ,
Boro	beterraba,	Bórax	0,1 - 0,3
БОГО	crucíferas,	Ác. Bórico	0,3-0,5
	frutíferas, cafeeiro		
	Hortaliças,	Calda	
Cobre	frutíferas e	bordaleza e	0,2 - 0,5
	cafeeiro	sulfato de Cu	
Ferro	Abacaxi, sorgo	Sulfato de Fe	0,6 - 2,0
	Aipo, citrus,		
Manganês	feijões, soja,	Sulfato de Mn	0,4-0,8
	tomateiro		
Molibdênio	Citrus, couve-flor,	Molibdato de	0,05 - 0,10
	repolho	Na ou de NH₄	0,00 - 0,10
Zinco	Plantas anuais	Sulfato de Zn	0,25 - 0,40

RECOMENDAÇÃO DE MICRONUTRIENTES POR VIA FOLIAR DIVERSAS CULTURAS (Motta et al., 2007)

Dose: 0,25 a 0,5 kg ha⁻¹

Aplicação: início do aparecimento dos sintomas

Fe, Mn e Zn: aplicações sucessivas

ADUBAÇÃO FOLIAR - GERAL

1. Deve ser encarada como suplemento da aplicação de fertilizantes no solo. Em ALGUMAS situações, a adubação foliar poderá substituir totalmente, ou quase a aplicação de fertilizantes no solo, corrigindo deficiências.

2. O fornecimento dos micronutrientes (exceto B) pode ser feito totalmente por via foliar, com vantagens sobre a aplicação no solo, pois evita-se a sua fixação pelo mesmo.

<u>Bibliografia</u>

- -Camargo, P.N.; Silva, O. Manual de adubação foliar. 1975. 258 p.
- -Malavolta, E. Manual de química agrícola: adubos e adubação, 1981. 596p.
- -Marschner, H. Mineral nutrition of higher plants. 1986. 672p.
- -Motta, A.C.V.; Serrat, B.M.; Reissmann, C.B.; Dionísio, J.A. Micronutrientes na rocha, no solo e na planta. 2007. 242p.
- Fernandes, M.S.; Souza, S.R. Absorção de nutrientes. **In:** FERNANDES, M.S. (Ed.) Nutrição mineral de plantas. Viçosa: SBCS, p.115-152. 2006.

SUGESTÃO DE LEITURA:

- -Camargo, P.N.; Silva, O. Manual de adubação foliar. 1975. 258 p. (principalmente pág. 65 a 108)
- -Malavolta, E. Manual de química agrícola: adubos e adubação, 1981. 596p. (páginas 408 424)